

MESHCHERYAKOV LABORATORY of INFORMATION TECHNOLOGIES

Status of geometry alignment of BM@N tracking detectors

Zarif Sharipov

Alignment for x and y

A	
$\Lambda \mathbf{v}$	 K

\square	$D_{ii} - u_{ii} - A_i Z - D_i + u_i$														
		S ₂	0	0	0	0	S_1	0	0	0	0	Z_2	Z ₃	Z_4	Z_5
a	$L_i = A_i, l = 1, \dots, n_t r$	0	S_2	0	0	0	0	S_1	0	0	0	Z ₂	Z_3	Z_4	Z_5
а	$x_i = B_i, i = n_t r + 1, \dots, 2n_t r$	0	0	S_2	0	0	0	0	S_1	0	0	Z ₂	Z_3	Z_4	Z_5
а	$u_i = du_i$, $i = 2n_{tr} + 1, \dots, 2n \ tr + n_{det} - 2$	0	0	0	S_2	0	0	0	0	S_1	0	Z ₂	Z_3	Z_4	Z_5
•	<i>i conf</i> , <i>i -ni</i> , <i>i -ni</i> , <i>i -ni</i> , <i>i i i i i i i i i i</i>	0	0	0	0	S_2	0	0	0	0	S_1	Z_2	Z_3	Z_4	Z_5
г		S_1	0	0	0	0	N _d	0	0	0	0	1	1	1	1
	N _d = 6 - number of detectors	0	S_1	0	0	0	0	N_{d}	0	0	0	1	1	1	1
	N _t = 5 - number of tracks	0	0	S_1	0	0	0	0	N_d	0	0	1	1	1	1
	α_1 α_{10} - parameters of tracks	0	0	0	S_1	0	0	0	0	N_d	0	1	1	1	1
		0	0	0	0	S_1	0	0	0	0	N_{d}	1	1	1	1
	$\alpha_{11}, \dots, \alpha_{14}$ - alignment parameters	Z ₂	Z ₂	Z ₂	Z ₂	Z_2	1	1	1	1	1	Nt	0	0	0
	of the detectors	Z ₃	Z₃	Z_3	Z_3	Z₃	1	1	1	1	1	0	N_{t}	0	0
-		Z ₄	Z_4	Z_4	Z_4	Z_4	1	1	1	1	1	0	0	N_{t}	0
		Z ₅	Z_5	Z_5	Z_5	Z_5	1	1	1	1	1	0	0	0	N_t

ΛC

Λσ

 $D \mid du$

- Volker Blobel, Claus Kleinwort. A New method for the high precision alignment of track detectors (<u>https://arxiv.org/abs/hep-ex/0208021</u>)
- 2. https://www.desy.de/~kleinwrt/MP2/doc/html/draftman_page.html

Alignment for x, y and z

S ₂	0	0	0	0	S ₁	0	0	0	0	Z ₂	Z_3	Z_4	Z_5	$Ax_{1}^{0}z_{2}$	$Ax_{1}^{0}z_{3}$	Ax_1^0	Z ₄
0	S_2	0	0	0	0	S_1	0	0	0	Z ₂	Z_3	Z_4	Z_5	$Ax_{2}^{0}z_{2}$	$Ax_{2}^{0}z_{3}$	Ax_2^0	Z ₄
0	0	S_2	0	0	0	0	S_1	0	0	Z ₂	Z_3	Z_4	Z_5				
0	0	0	S_2	0	0	0	0	S_1	0	Z ₂	Z_3	Z_4	Z_5				
0	0	0	0	S_2	0	0	0	0	S_1	Z_2	Z_3	Z_4	Z_5				
S_1	0	0	0	0	N_{d}	0	0	0	0	1	1	1	1	Ax_1^0	Ax_1^0	Ax_1^0	
0	S_1	0	0	0	0	N_{d}	0	0	0	1	1	1	1	Ax_2^0	Ax_2^0	Ax_2^0	
0	0	S_1	0	0	0	0	N_d	0	0	1	1	1	1			2	
0	0	0	S_1	0	0	0	0	N_{d}	0	1	1	1	1				
0	0	0	0	S_1	0	0	0	0	N_{d}	1	1	1	1				
Z ₂	Z_2	Z_2	Z_2	Z_2	1	1	1	1	1	N_t	0	0	0	$\sum Ax_i^0$) 0		
Z ₃	Z_3	Z_3	Z_3	Z_3	1	1	1	1	1	0	N_{t}	0	0		Σ. 41	.0	
Z ₄	Z_4	Z_4	Z_4	Z_4	1	1	1	1	1	0	0	N_{t}	0	0	Цiнл	'i S	40
Z ₅	Z_5	Z_5	Z_5	Z_5	1	1	1	1	1	0	0	0	N_t			Li	Ax_i°

Alignment for x, y and z

Principle of alignment

1. IMSL Fortran Library

(https://www.imsl.com/products/imsl-fortran-libraries)

2. Eigen

(https://eigen.tuxfamily.org/index.php?title=Main_Page)

3. Millepede-II

(https://www.desy.de/~kleinwrt/MP2/doc/html/draftman_page.html)

Schematic view of Forward Silicon detectors including 4th Si plane and first large apperture GEM stations in YZ (left) and XZ (right) projections.